On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses.
نویسندگان
چکیده
C(4) photosynthesis involves cell-to-cell exchange of photosynthetic intermediates between the Kranz mesophyll (KMS) and bundle sheath (BS) cells. This was believed to occur by simple diffusion through plentiful plasmodesmatal (PD) connections between these cell types. The model of C(4) intermediates' transport was elaborated over 30 years ago and was based on experimental data derived from measurements at the time. The model assumed that plasmodesmata occupied about 3% of the interface between the KMS and BS cells and that the plasmodesmata structure did not restrict metabolite movement. Recent advances in the knowledge of plasmodesmatal structure put these assumptions into doubt, so a new model is presented here taking the new anatomical details into account. If one assumes simple diffusion as the sole driving force, then calculations based on the experimental data obtained for C(4) grasses show that the gradients expected of C(4) intermediates between KMS and BS cells are about three orders of magnitude higher than experimentally estimated. In addition, if one takes into account that the plasmodesmata microchannel diameter might constrict the movement of C(4) intermediates of comparable Stokes' radii, the differences in concentration of photosynthetic intermediates between KMS and BS cells should be further increased. We believe that simple diffusion-driven transport of C(4) intermediates between KMS and BS cells through the plasmodesmatal microchannels is not adequate to explain the C(4) metabolite exchange during C(4) photosynthesis. Alternative mechanisms are proposed, involving the participation of desmotubule and/or active mechanisms as either apoplasmic or vesicular transport.
منابع مشابه
Evolution of C4 photosynthesis--looking for the master switch.
C4 PHOTOSYNTHESIS—THE BASICS C4 photosynthesis is a unique blend of biochemical, anatomical, and gene regulatory characteristics. In the vast majority of C4 plants, i.e. with the exception of single-cell C4 photosynthesis in the Chenopodiaceae, this photosynthetic pathway is the result of the integrated metabolic activities of two distinct, specialized leaf cell types, mesophyll and bundle shea...
متن کاملFrom proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.
In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photor...
متن کاملThe functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice.
One mechanism to enhance global food stocks radically is to introduce C4 photosynthesis into C3 crops from warm climates, notably rice. To accomplish this, an understanding of leaf structure and function is essential. The chlorenchyma structure of rice and related warm-climate C3 grasses is distinct from that of cool temperate C3 grasses. In temperate C3 grasses, vacuoles occupy the majority of...
متن کاملDeconstructing Kranz anatomy to understand C4 evolution.
C4 photosynthesis is a complex physiological adaptation that confers greater productivity than the ancestral C3 photosynthetic type in environments where photorespiration is high. It evolved in multiple lineages through the coordination of anatomical and biochemical components, which concentrate CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most C4 plan...
متن کاملStructural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis
In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 59 6 شماره
صفحات -
تاریخ انتشار 2008